Stochastic algorithm for Bayesian mixture effect template estimation
نویسندگان
چکیده
منابع مشابه
Stochastic Algorithm For Parameter Estimation For Dense Deformable Template Mixture Model
Estimating probabilistic deformable template models is a new approach in the fields of computer vision and probabilistic atlases in computational anatomy. A first coherent statistical framework modelling the variability as a hidden random variable has been given by Allassonnière, Amit and Trouvé in [1] in simple and mixture of deformable template models. A consistent stochastic algorithm has be...
متن کاملVariational Bayesian Stochastic Complexity of Mixture Models
The Variational Bayesian framework has been widely used to approximate the Bayesian learning. In various applications, it has provided computational tractability and good generalization performance. In this paper, we discuss the Variational Bayesian learning of the mixture of exponential families and provide some additional theoretical support by deriving the asymptotic form of the stochastic c...
متن کاملBayesian template estimation in computational anatomy
Templates play a fundamental role in Computational Anatomy. In this paper, we present a Bayesian model for template estimation. It is assumed that observed images I(1), I(2),...,I(N) are generated by shooting the template J through Gaussian distributed random initial momenta theta(1), theta(2),...,theta(N). The template is J modeled as a deformation from a given hypertemplate J(0) with initial ...
متن کاملPerceptual grouping as Bayesian mixture estimation
Perceptual grouping is the process by which the visual system organizes the image into distinct objects or clusters. Here we briefly describe a Bayesian approach to grouping, formulating it as an inverse probability problem in which the goal is to estimate the organization that best explains the observed set of visual elements. We pose the problem as an instance of mixture modeling, in which th...
متن کاملA Bayesian Generative Model for Surface Template Estimation
3D surfaces are important geometric models for many objects of interest in image analysis and Computational Anatomy. In this paper, we describe a Bayesian inference scheme for estimating a template surface from a set of observed surface data. In order to achieve this, we use the geodesic shooting approach to construct a statistical model for the generation and the observations of random surface...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ESAIM: Probability and Statistics
سال: 2010
ISSN: 1292-8100,1262-3318
DOI: 10.1051/ps/2009001